相差54岁的ldquo爷孙恋rdq
中科白癜风公益惠民活动 https://m-mip.39.net/disease/mipso_5778567.html 他是我的表弟,一个对音乐一窍不通的小男孩,每每坐到我的琴前,都会表现出一副音乐家的姿态,在琴键上尽情挥洒他对于音乐的热爱。 曾几何时,我也像他一样,秉承着一份热情,投入一项爱好,无法自拔。我会在一张画纸上,倾泻小小的情绪,尽管画工十分浅薄;我会在动听的乐曲里,不由自主地歌唱,尽管嗓音不那么嘹亮;我会用相机,用心记录下沿途所见的风景,尽管技术并不精湛……我想,人生在世,何必在意那些细枝末节,学会在平淡如水的生活中,用双手扬起朵朵浪花,寻找生活的情趣,抓住逝去的光阴里的每一个小空隙。会玩,才好。喜欢约上三两个好友,登上高高的山顶,在天宇下放声歌唱。在山顶上歌唱,脑袋是空空的,心是明朗的。当自己的歌声从那方的山传回时,心是飘飘的,飘出了躯壳,飘到了天上,与浮云做伴,与天宇相栖。唱到漫天繁星,唱到街灯通明,唱 春暖花正开,我们都是一群开始学会浅忆的孩子,总是喜欢自由的穿梭在季节的半度微凉里,行走着,也不断寻找着,那个温暖季节里不老的青春,那个春天中哭过笑过的日子。 凉凉的风迅速钻进每个刚出教室的人的脖子里,吸走所有温暖之后扬长而去。一个个班级排着不太整齐的队形围着操场跑着,踩着还恋恋不舍离去的风,循环似地跑。在这个沙土满天飞的地方,这个用多少汗水浇灌过依然没有变样的地方,这个满天飞舞着梦想羽毛的地方。我,我们都在进行着一场不允许暂停的旅程。 卸下了厚重的围脖、手套,每个人都显得清爽多了,这也许就是春天对我最大的馈赠吧。迫不及待换上单薄衣服的我也任岁月在我单薄的青春里放肆地游走,这个季节也记载着我们“时光不老,我们不散”的誓言。在初三仅剩的七十多天里,开始享受着汗水浸透衣服的酣畅,开始提笔将一件件往事定格在同学录上,尽管这些精致的纸掩盖不住每个人内心的伤。这些都是这个季节的附带品,我像是个提前拆开了包装的人,没理由拒绝。也许,还不是最感伤的六月,但我已经开始练习释然,预演着一颗不会流泪的心。事实证明是我无能,放不下这珍贵的三年光阴,走不出这个温暖到伤悲的春天。 年的春天,我们说好一起走下去,就当做我三年初中生活的最终结局,就当我们关于这个季节的约定。 阳光将雾气暖开了,化作一滩水花落在地上,无声无息中视界清晰了,空气中充斥着这个季节本来的清新。远山轮廓分明,学校里新栽的玉兰花含苞待放,一切都在盼望着。复习、订正习题成了每天的生活,和每个初三学生一样,习惯性地在练习本上凌乱地写着运算步骤,将算出的答案无比认真的写在试卷上,用醒目红笔圈改着,看着练习册上那从未谋面的题目。偶尔抬头仰望几下我眼中总有云飘过的天空。这个春天,我们一直在成长,仿佛镌刻着生命中一段独一无二的时光。 每天都是打在走廊里的几米阳光,老师们总不时地向我们脑中灌输着“努力学习,再拼上两个月”的信息。在这样的日子里,看个电视剧成为了每个学生最大的奢侈。看书、复习成了我一直坐在书桌前的动力。如果说夏天是每个毕业生都抱成一团哭的季节,那么春天就是每个毕业生拼搏努力的季节。所以,阳光正明媚,路上花正开,我们正行走着。 放任心飞行,原来春天一直都在,不想把季节的更替禁锢在日历上。我想那应该是一种无休止的奔跑。蓝天白云绿草地,任由心情行走在自然的馥郁里,我向往着,这淡然的时光,这偶尔会盼望着的早春时节。我想春天就是这样一种意境吧,像天空中的云一样,自己飘出一个世界,无论生活给予的是悲伤还是快乐,这惬意的春一直都在。繁忙之中,仍有季节陪我走。 到耐不住山风的 三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。 料峭时,我们才舍得离去。 喜欢背上吉他,去到远方的原野,与轻风流水应和。弹自己最爱的曲子,想自己最想念的朋友:她在那边还好吗,她是否过得快乐呢?喜欢周杰伦的《枫》中的“缓缓飘落的枫叶像思念,我点燃烛光温暖岁末的秋天”,然而我的思念就像那绵绵不断的轻风,像那缓缓而过的流水。我多想用自己仅会的几首曲子,来温暖自己心灵的秋天。 喜欢到小城的美食街上,去寻找不一样的风味。油泼辣子淌在软糯白嫩的面条上“滋滋”作响,一清二白三红四绿的拉面也别具风味。当晶莹剔透的凉皮弹入双唇时,酷爽的炎夏又多了一分韵味。尝的是油盐酱醋茶,品的是生活的酸甜苦辣咸。喜欢在夕阳的余晖里,捧上一本最爱的书,缅怀又一天的逝去。感谢东坡先生教会我,要一直保持“仰天大笑出门去”的乐观旷达;感谢青莲居士教会我,要在平淡无奇的生活中追寻浪漫;感谢易安居士教会我,要在逆境中学会抗争……还喜欢《简·爱》中女主人公的人格独立,喜欢《红楼梦》中林妹妹的“腹有诗书气自华”,喜欢《追风筝的人》中哈桑的虔诚善良…… 这些感人的书,这些不平凡的人物,伴我走过美好的青葱岁月。感谢,感恩。 会玩,才好。在生活中会玩,在玩中学会生活。在繁忙的生活中学会自我排解,用一颗向上的心去感知生活的美好,才能够活得舒服,活得有意义。那么,玩起来如果能够把疾病也全数消灭,那么这份苦难又将由(比如说)像貌丑陋的人去承担了。就算我们连丑陋,连愚昧和卑鄙和一切我们所不喜欢的事物和行为,也都可以统统消灭掉,所有的人都一样健康,漂亮,聪慧,高尚,结果会怎样呢?怕是人间的剧目就全要收场了,一个失去差别的世界将是一条死水,是一块没有感觉没有肥力的沙漠。 4、浩倡。《九歌·东皇太一》:“陈竽瑟兮浩倡”。“浩倡”又作“浩唱”,和上句“安歌”相对应。取名时可改为“浩昌”。下文《九歌·少司命》中还有“浩歌”。令诸校屯豫章梅领待命。 每隔几年杨振宁和翁帆都会被人们拿出来讨论庚子年 八月十三 打开音乐聆听云上的声音 遇见荠麦青青( 他是我的表弟,一个对音乐一窍不通的小男孩,每每坐到我的琴前,都会表现出一副音乐家的姿态,在琴键上尽情挥洒他对于音乐的热爱。 曾几何时,我也像他一样,秉承着一份热情,投入一项爱好,无法自拔。我会在一张画纸上,倾泻小小的情绪,尽管画工十分浅薄;我会在动听的乐曲里,不由自主地歌唱,尽管嗓音不那么嘹亮;我会用相机,用心记录下沿途所见的风景,尽管技术并不精湛……我想,人生在世,何必在意那些细枝末节,学会在平淡如水的生活中,用双手扬起朵朵浪花,寻找生活的情趣,抓住逝去的光阴里的每一个小空隙。会玩,才好。喜欢约上三两个好友,登上高高的山顶,在天宇下放声歌唱。在山顶上歌唱,脑袋是空空的,心是明朗的。当自己的歌声从那方的山传回时,心是飘飘的,飘出了躯壳,飘到了天上,与浮云做伴,与天宇相栖。唱到漫天繁星,唱到街灯通明,唱 春暖花正开,我们都是一群开始学会浅忆的孩子,总是喜欢自由的穿梭在季节的半度微凉里,行走着,也不断寻找着,那个温暖季节里不老的青春,那个春天中哭过笑过的日子。 凉凉的风迅速钻进每个刚出教室的人的脖子里,吸走所有温暖之后扬长而去。一个个班级排着不太整齐的队形围着操场跑着,踩着还恋恋不舍离去的风,循环似地跑。在这个沙土满天飞的地方,这个用多少汗水浇灌过依然没有变样的地方,这个满天飞舞着梦想羽毛的地方。我,我们都在进行着一场不允许暂停的旅程。 卸下了厚重的围脖、手套,每个人都显得清爽多了,这也许就是春天对我最大的馈赠吧。迫不及待换上单薄衣服的我也任岁月在我单薄的青春里放肆地游走,这个季节也记载着我们“时光不老,我们不散”的誓言。在初三仅剩的七十多天里,开始享受着汗水浸透衣服的酣畅,开始提笔将一件件往事定格在同学录上,尽管这些精致的纸掩盖不住每个人内心的伤。这些都是这个季节的附带品,我像是个提前拆开了包装的人,没理由拒绝。也许,还不是最感伤的六月,但我已经开始练习释然,预演着一颗不会流泪的心。事实证明是我无能,放不下这珍贵的三年光阴,走不出这个温暖到伤悲的春天。 年的春天,我们说好一起走下去,就当做我三年初中生活的最终结局,就当我们关于这个季节的约定。 阳光将雾气暖开了,化作一滩水花落在地上,无声无息中视界清晰了,空气中充斥着这个季节本来的清新。远山轮廓分明,学校里新栽的玉兰花含苞待放,一切都在盼望着。复习、订正习题成了每天的生活,和每个初三学生一样,习惯性地在练习本上凌乱地写着运算步骤,将算出的答案无比认真的写在试卷上,用醒目红笔圈改着,看着练习册上那从未谋面的题目。偶尔抬头仰望几下我眼中总有云飘过的天空。这个春天,我们一直在成长,仿佛镌刻着生命中一段独一无二的时光。 每天都是打在走廊里的几米阳光,老师们总不时地向我们脑中灌输着“努力学习,再拼上两个月”的信息。在这样的日子里,看个电视剧成为了每个学生最大的奢侈。看书、复习成了我一直坐在书桌前的动力。如果说夏天是每个毕业生都抱成一团哭的季节,那么春天就是每个毕业生拼搏努力的季节。所以,阳光正明媚,路上花正开,我们正行走着。 放任心飞行,原来春天一直都在,不想把季节的更替禁锢在日历上。我想那应该是一种无休止的奔跑。蓝天白云绿草地,任由心情行走在自然的馥郁里,我向往着,这淡然的时光,这偶尔会盼望着的早春时节。我想春天就是这样一种意境吧,像天空中的云一样,自己飘出一个世界,无论生活给予的是悲伤还是快乐,这惬意的春一直都在。繁忙之中,仍有季节陪我走。 到耐不住山风的 三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。 料峭时,我们才舍得离去。 喜欢背上吉他,去到远方的原野,与轻风流水应和。弹自己最爱的曲子,想自己最想念的朋友:她在那边还好吗,她是否过得快乐呢?喜欢周杰伦的《枫》中的“缓缓飘落的枫叶像思念,我点燃烛光温暖岁末的秋天”,然而我的思念就像那绵绵不断的轻风,像那缓缓而过的流水。我多想用自己仅会的几首曲子,来温暖自己心灵的秋天。 喜欢到小城的美食街上,去寻找不一样的风味。油泼辣子淌在软糯白嫩的面条上“滋滋”作响,一清二白三红四绿的拉面也别具风味。当晶莹剔透的凉皮弹入双唇时,酷爽的炎夏又多了一分韵味。尝的是油盐酱醋茶,品的是生活的酸甜苦辣咸。喜欢在夕阳的余晖里,捧上一本最爱的书,缅怀又一天的逝去。感谢东坡先生教会我,要一直保持“仰天大笑出门去”的乐观旷达;感谢青莲居士教会我,要在平淡无奇的生活中追寻浪漫;感谢易安居士教会我,要在逆境中学会抗争……还喜欢《简·爱》中女主人公的人格独立,喜欢《红楼梦》中林妹妹的“腹有诗书气自华”,喜欢《追风筝的人》中哈桑的虔诚善良…… 这些感人的书,这些不平凡的人物,伴我走过美好的青葱岁月。感谢,感恩。 会玩,才好。在生活中会玩,在玩中学会生活。在繁忙的生活中学会自我排解,用一颗向上的心去感知生活的美好,才能够活得舒服,活得有意义。那么,玩起来如果能够把疾病也全数消灭,那么这份苦难又将由(比如说)像貌丑陋的人去承担了。就算我们连丑陋,连愚昧和卑鄙和一切我们所不喜欢的事物和行为,也都可以统统消灭掉,所有的人都一样健康,漂亮,聪慧,高尚,结果会怎样呢?怕是人间的剧目就全要收场了,一个失去差别的世界将是一条死水,是一块没有感觉没有肥力的沙漠。 4、浩倡。《九歌·东皇太一》:“陈竽瑟兮浩倡”。“浩倡”又作“浩唱”,和上句“安歌”相对应。取名时可改为“浩昌”。下文《九歌·少司命》中还有“浩歌”。令诸校屯豫章梅领待命。 著名剧作家曹禺先生的女儿万方永远忘不了这一幕:晚年时的父亲坐在轮椅上,怅然叹道:衰老真是一件可怕的事情。 衰老,在很多时候,往往意味着身体机能的退化,创造力的减弱,甚至丧失,还有一并汹涌而至的,是仿佛陷在无边暗夜里的孤独。 但对于今年已经98岁的杨振宁来说,本应该同样无法避免的困境,因为6年前翁帆的到来,衍化为一场诗意而幸福的生命体验。 近日,杨振宁接受聘请,担任安徽大学纽约石溪分院的名誉院长一职,妻子翁帆陪伴在其身边,一同亮相。 在记者的镜头下,还有两年,即将成为百岁老人的杨振宁仍精神矍铄,但44岁的翁帆似乎并未像人们记忆中的那般风韵犹存,有人直指翁帆身形浮肿,形容憔悴。 杨振宁正式受聘担负“安徽大学纽约石溪分院”的名誉院长,妻子翁帆伴随在其身边 清晨的阳光倾泻在他胖 如右图,六边形的六个角分别代表六种三角函数,存在如下关系: )对角相乘乘积为,即sinθ·cscθ=;cosθ·scθ=;tanθ·cotθ=。 2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·scθ... 3)阴影部分的三 六个三角函数也可以依据半径为中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0和π/2弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理, 三角函数 单位圆的方程是:对于圆上的任意点(x,y),x2+y2=。 图像中给出了用弧度度量的一些常见的角:逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的x和y坐标分别等于cosθ和sinθ。图像中的三角形确保了这个公式;半径等于斜边且长度为,所以有sinθ=y/和cosθ=x/。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于的一种查看无限个三角形的方式。 对于大于2π或小于等于2π的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为2π的周期函数:对于任何角度θ和任何整数k。 周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是2π弧度或°;正切或余切的基本周期是半圆,也就是π弧度或80°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。 在正切函数的图像中,在角kπ附近变化缓慢,而在接近角(k+/2)π的时候变化迅速。正切函数的图像在θ=(k+/2)π有垂直渐近线。这是因为在θ从左侧接进(k+/2)π的时候函数接近正无穷,而从右侧接近(k+/2)π的时候函数接近负无穷。 三角函数 另一方面,所有基本三角函数都可依据中心为O的单位圆来定义,类似于历史上使用的几何定义。特别是,对于这个圆的弦AB,这里的θ是对向角的一半,sinθ是AC(半弦),这是印度的阿耶波多介入的定义。cosθ是水平距离OC,vrsinθ=-cosθ是CD。tanθ是通过A的切线的线段AE的长度,所以这个函数才叫正切。cotθ是另一个切线段AF。scθ=OE和cscθ=OF是割线(与圆相交于两点)的线段,所以可以看作OA沿着A的切线分别向水平和垂直轴的投影。DE是xscθ=scθ-(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在θ接近π/2的时候发散,而余割和余切在θ接近零的时候发散。 依据单位圆定义,可以做三个有向线段(向量)来表示正弦、余弦、正切的值。如图所示,圆O是一个单位圆,P是α的终边与单位圆上的交点,M点是P在x轴的投影,A(,0)是圆O与x轴正半轴的交点,过A点做过圆O的切线。 那么向量MP对应的就是α的正弦值,向量OM对应的就是余弦值。OP的延长线(或反向延长线)与过A点的切线的交点为T,则向量AT对应的就是正切值。向量的起止点不能颠倒,因为其方向是有意义的。 角形,处于上方两个顶点的平方之和等于下顶点的平方值,如: ; ; 。 变化规律 正弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大); 余弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大); 正切值在 随角度增大(减小)而增大(减小); 余切值在 随角度增大(减小)而减小(增大)。 注:以上其他情况可类推,参考第五项:几何性质。 除了上述六个常见的函数,还有一些不常见的三角函数: 乎乎的小手上,他摇晃着身子,小手在黑白键上随意移动,脚掌在地上一起一落,谁都不知道他在弹些什么。他似乎很陶醉似的紧闭双眼,微抿小嘴,哼唱着一些毫不搭调的曲子,满脸的欢喜。 他是我的表弟,一个对音乐一窍不通的小男孩,每每坐到我的琴前,都会表现出一副音乐家的姿态,在琴键上尽情挥洒他对于音乐的热爱。 曾几何时,我也像他一样,秉承着一份热情,投入一项爱好,无法自拔。我会在一张画纸上,倾泻小小的情绪,尽管画工十分浅薄;我会在动听的乐曲里,不由自主地歌唱,尽管嗓音不那么嘹亮;我会用相机,用心记录下沿途所见的风景,尽管技术并不精湛……我想,人生在世,何必在意那些细枝末节,学会在平淡如水的生活中,用双手扬起朵朵浪花,寻找生活的情趣,抓住逝去的光阴里的每一个小空隙。会玩,才好。喜欢约上三两个好友,登上高高的山顶,在天宇下放声歌唱。在山顶上歌唱,脑袋是空空的,心是明朗的。当自己的歌声从那方的山传回时,心是飘飘的,飘出了躯壳,飘到了天上,与浮云做伴,与天宇相栖。唱到漫天繁星,唱到街灯通明,唱 春暖花正开,我们都是一群开始学会浅忆的孩子,总是喜欢自由的穿梭在季节的半度微凉里,行走着,也不断寻找着,那个温暖季节里不老的青春,那个春天中哭过笑过的日子。 凉凉的风迅速钻进每个刚出教室的人的脖子里,吸走所有温暖之后扬长而去。一个个班级排着不太整齐的队形围着操场跑着,踩着还恋恋不舍离去的风,循环似地跑。在这个沙土满天飞的地方,这个用多少汗水浇灌过依然没有变样的地方,这个满天飞舞着梦想羽毛的地方。我,我们都在进行着一场不允许暂停的旅程。 卸下了厚重的围脖、手套,每个人都显得清爽多了,这也许就是春天对我最大的馈赠吧。迫不及待换上单薄衣服的我也任岁月在我单薄的青春里放肆地游走,这个季节也记载着我们“时光不老,我们不散”的誓言。在初三仅剩的七十多天里,开始享受着汗水浸透衣服的酣畅,开始提笔将一件件往事定格在同学录上,尽管这些精致的纸掩盖不住每个人内心的伤。这些都是这个季节的附带品,我像是个提前拆开了包装的人,没理由拒绝。也许,还不是最感伤的六月,但我已经开始练习释然,预演着一颗不会流泪的心。事实证明是我无能,放不下这珍贵的三年光阴,走不出这个温暖到伤悲的春天。 年的春天,我们说好一起走下去,就当做我三年初中生活的最终结局,就当我们关于这个季节的约定。 阳光将雾气暖开了,化作一滩水花落在地上,无声无息中视界清晰了,空气中充斥着这个季节本来的清新。远山轮廓分明,学校里新栽的玉兰花含苞待放,一切都在盼望着。复习、订正习题成了每天的生活,和每个初三学生一样,习惯性地在练习本上凌乱地写着运算步骤,将算出的答案无比认真的写在试卷上,用醒目红笔圈改着,看着练习册上那从未谋面的题目。偶尔抬头仰望几下我眼中总有云飘过的天空。这个春天,我们一直在成长,仿佛镌刻着生命中一段独一无二的时光。 每天都是打在走廊里的几米阳光,老师们总不时地向我们脑中灌输着“努力学习,再拼上两个月”的信息。在这样的日子里,看个电视剧成为了每个学生最大的奢侈。看书、复习成了我一直坐在书桌前的动力。如果说夏天是每个毕业生都抱成一团哭的季节,那么春天就是每个毕业生拼搏努力的季节。所以,阳光正明媚,路上花正开,我们正行走着。 放任心飞行,原来春天一直都在,不想把季节的更替禁锢在日历上。我想那应该是一种无休止的奔跑。蓝天白云绿草地,任由心情行走在自然的馥郁里,我向往着,这淡然的时光,这偶尔会盼望着的早春时节。我想春天就是这样一种意境吧,像天空中的云一样,自己飘出一个世界,无论生活给予的是悲伤还是快乐,这惬意的春一直都在。繁忙之中,仍有季节陪我走。 到耐不住山风的 三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。 料峭时,我们才舍得离去。 喜欢背上吉他,去到远方的原野,与轻风流水应和。弹自己最爱的曲子,想自己最想念的朋友:她在那边还好吗,她是否过得快乐呢?喜欢周杰伦的《枫》中的“缓缓飘落的枫叶像思念,我点燃烛光温暖岁末的秋天”,然而我的思念就像那绵绵不断的轻风,像那缓缓而过的流水。我多想用自己仅会的几首曲子,来温暖自己心灵的秋天。 喜欢到小城的美食街上,去寻找不一样的风味。油泼辣子淌在软糯白嫩的面条上“滋滋”作响,一清二白三红四绿的拉面也别具风味。当晶莹剔透的凉皮弹入双唇时,酷爽的炎夏又多了一分韵味。尝的是油盐酱醋茶,品的是生活的酸甜苦辣咸。喜欢在夕阳的余晖里,捧上一本最爱的书,缅怀又一天的逝去。感谢东坡先生教会我,要一直保持“仰天大笑出门去”的乐观旷达;感谢青莲居士教会我,要在平淡无奇的生活中追寻浪漫;感谢易安居士教会我,要在逆境中学会抗争……还喜欢《简·爱》中女主人公的人格独立,喜欢《红楼梦》中林妹妹的“腹有诗书气自华”,喜欢《追风筝的人》中哈桑的虔诚善良…… 这些感人的书,这些不平凡的人物,伴我走过美好的青葱岁月。感谢,感恩。 会玩,才好。在生活中会玩,在玩中学会生活。在繁忙的生活中学会自我排解,用一颗向上的心去感知生活的美好,才能够活得舒服,活得有意义。那么,玩起来如果能够把疾病也全数消灭,那么这份苦难又将由(比如说)像貌丑陋的人去承担了。就算我们连丑陋,连愚昧和卑鄙和一切我们所不喜欢的事物和行为,也都可以统统消灭掉,所有的人都一样健康,漂亮,聪慧,高尚,结果会怎样呢?怕是人间的剧目就全要收场了,一个失去差别的世界将是一条死水,是一块没有感觉没有肥力的沙漠。 4、浩倡。《九歌·东皇太一》:“陈竽瑟兮浩倡”。“浩倡”又作“浩唱”,和上句“安歌”相对应。取名时可改为“浩昌”。下文《九歌·少司命》中还有“浩歌”。令诸校屯豫章梅领待命。 人们热衷从他们身上找到这种巨大的反差,来印证那场相差54岁的“忘年恋”的荒诞,或者爱情的伟大。年,82岁的杨振宁与28岁的翁帆结婚,令世人哗然。 杨振宁与翁帆婚纱照 年龄上的悬殊,让他们的婚姻从始至终,就一直深陷于舆论的巨大漩涡。 面对这对“老少配”,很多人自然想到了历史上的那桩趣事。 清晨的阳光倾泻在他胖 如右图,六边形的六个角分别代表六种三角函数,存在如下关系: )对角相乘乘积为,即sinθ·cscθ=;cosθ·scθ=;tanθ·cotθ=。 2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·scθ... 3)阴影部分的三 六个三角函数也可以依据半径为中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0和π/2弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理, 三角函数 单位圆的方程是:对于圆上的任意点(x,y),x2+y2=。 图像中给出了用弧度度量的一些常见的角:逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的x和y坐标分别等于cosθ和sinθ。图像中的三角形确保了这个公式;半径等于斜边且长度为,所以有sinθ=y/和cosθ=x/。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于的一种查看无限个三角形的方式。 对于大于2π或小于等于2π的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为2π的周期函数:对于任何角度θ和任何整数k。 周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是2π弧度或°;正切或余切的基本周期是半圆,也就是π弧度或80°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。 在正切函数的图像中,在角kπ附近变化缓慢,而在接近角(k+/2)π的时候变化迅速。正切函数的图像在θ=(k+/2)π有垂直渐近线。这是因为在θ从左侧接进(k+/2)π的时候函数接近正无穷,而从右侧接近(k+/2)π的时候函数接近负无穷。 三角函数 另一方面,所有基本三角函数都可依据中心为O的单位圆来定义,类似于历史上使用的几何定义。特别是,对于这个圆的弦AB,这里的θ是对向角的一半,sinθ是AC(半弦),这是印度的阿耶波多介入的定义。cosθ是水平距离OC,vrsinθ=-cosθ是CD。tanθ是通过A的切线的线段AE的长度,所以这个函数才叫正切。cotθ是另一个切线段AF。scθ=OE和cscθ=OF是割线(与圆相交于两点)的线段,所以可以看作OA沿着A的切线分别向水平和垂直轴的投影。DE是xscθ=scθ-(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在θ接近π/2的时候发散,而余割和余切在θ接近零的时候发散。 依据单位圆定义,可以做三个有向线段(向量)来表示正弦、余弦、正切的值。如图所示,圆O是一个单位圆,P是α的终边与单位圆上的交点,M点是P在x轴的投影,A(,0)是圆O与x轴正半轴的交点,过A点做过圆O的切线。 那么向量MP对应的就是α的正弦值,向量OM对应的就是余弦值。OP的延长线(或反向延长线)与过A点的切线的交点为T,则向量AT对应的就是正切值。向量的起止点不能颠倒,因为其方向是有意义的。 角形,处于上方两个顶点的平方之和等于下顶点的平方值,如: ; ; 。 变化规律 正弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大); 余弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大); 正切值在 随角度增大(减小)而增大(减小); 余切值在 随角度增大(减小)而减小(增大)。 注:以上其他情况可类推,参考第五项:几何性质。 除了上述六个常见的函数,还有一些不常见的三角函数: 乎乎的小手上,他摇晃着身子,小手在黑白键上随意移动,脚掌在地上一起一落,谁都不知道他在弹些什么。他似乎很陶醉似的紧闭双眼,微抿小嘴,哼唱着一些毫不搭调的曲子,满脸的欢喜。 他是我的表弟,一个对音乐一窍不通的小男孩,每每坐到我的琴前,都会表现出一副音乐家的姿态,在琴键上尽情挥洒他对于音乐的热爱。 曾几何时,我也像他一样,秉承着一份热情,投入一项爱好,无法自拔。我会在一张画纸上,倾泻小小的情绪,尽管画工十分浅薄;我会在动听的乐曲里,不由自主地歌唱,尽管嗓音不那么嘹亮;我会用相机,用心记录下沿途所见的风景,尽管技术并不精湛……我想,人生在世,何必在意那些细枝末节,学会在平淡如水的生活中,用双手扬起朵朵浪花,寻找生活的情趣,抓住逝去的光阴里的每一个小空隙。会玩,才好。喜欢约上三两个好友,登上高高的山顶,在天宇下放声歌唱。在山顶上歌唱,脑袋是空空的,心是明朗的。当自己的歌声从那方的山传回时,心是飘飘的,飘出了躯壳,飘到了天上,与浮云做伴,与天宇相栖。唱到漫天繁星,唱到街灯通明,唱 春暖花正开,我们都是一群开始学会浅忆的孩子,总是喜欢自由的穿梭在季节的半度微凉里,行走着,也不断寻找着,那个温暖季节里不老的青春,那个春天中哭过笑过的日子。 凉凉的风迅速钻进每个刚出教室的人的脖子里,吸走所有温暖之后扬长而去。一个个班级排着不太整齐的队形围着操场跑着,踩着还恋恋不舍离去的风,循环似地跑。在这个沙土满天飞的地方,这个用多少汗水浇灌过依然没有变样的地方,这个满天飞舞着梦想羽毛的地方。我,我们都在进行着一场不允许暂停的旅程。 卸下了厚重的围脖、手套,每个人都显得清爽多了,这也许就是春天对我最大的馈赠吧。迫不及待换上单薄衣服的我也任岁月在我单薄的青春里放肆地游走,这个季节也记载着我们“时光不老,我们不散”的誓言。在初三仅剩的七十多天里,开始享受着汗水浸透衣服的酣畅,开始提笔将一件件往事定格在同学录上,尽管这些精致的纸掩盖不住每个人内心的伤。这些都是这个季节的附带品,我像是个提前拆开了包装的人,没理由拒绝。也许,还不是最感伤的六月,但我已经开始练习释然,预演着一颗不会流泪的心。事实证明是我无能,放不下这珍贵的三年光阴,走不出这个温暖到伤悲的春天。 年的春天,我们说好一起走下去,就当做我三年初中生活的最终结局,就当我们关于这个季节的约定。 阳光将雾气暖开了,化作一滩水花落在地上,无声无息中视界清晰了,空气中充斥着这个季节本来的清新。远山轮廓分明,学校里新栽的玉兰花含苞待放,一切都在盼望着。复习、订正习题成了每天的生活,和每个初三学生一样,习惯性地在练习本上凌乱地写着运算步骤,将算出的答案无比认真的写在试卷上,用醒目红笔圈改着,看着练习册上那从未谋面的题目。偶尔抬头仰望几下我眼中总有云飘过的天空。这个春天,我们一直在成长,仿佛镌刻着生命中一段独一无二的时光。 每天都是打在走廊里的几米阳光,老师们总不时地向我们脑中灌输着“努力学习,再拼上两个月”的信息。在这样的日子里,看个电视剧成为了每个学生最大的奢侈。看书、复习成了我一直坐在书桌前的动力。如果说夏天是每个毕业生都抱成一团哭的季节,那么春天就是每个毕业生拼搏努力的季节。所以,阳光正明媚,路上花正开,我们正行走着。 放任心飞行,原来春天一直都在,不想把季节的更替禁锢在日历上。我想那应该是一种无休止的奔跑。蓝天白云绿草地,任由心情行走在自然的馥郁里,我向往着,这淡然的时光,这偶尔会盼望着的早春时节。我想春天就是这样一种意境吧,像天空中的云一样,自己飘出一个世界,无论生活给予的是悲伤还是快乐,这惬意的春一直都在。繁忙之中,仍有季节陪我走。 到耐不住山风的 三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。 料峭时,我们才舍得离去。 喜欢背上吉他,去到远方的原野,与轻风流水应和。弹自己最爱的曲子,想自己最想念的朋友:她在那边还好吗,她是否过得快乐呢?喜欢周杰伦的《枫》中的“缓缓飘落的枫叶像思念,我点燃烛光温暖岁末的秋天”,然而我的思念就像那绵绵不断的轻风,像那缓缓而过的流水。我多想用自己仅会的几首曲子,来温暖自己心灵的秋天。 喜欢到小城的美食街上,去寻找不一样的风味。油泼辣子淌在软糯白嫩的面条上“滋滋”作响,一清二白三红四绿的拉面也别具风味。当晶莹剔透的凉皮弹入双唇时,酷爽的炎夏又多了一分韵味。尝的是油盐酱醋茶,品的是生活的酸甜苦辣咸。喜欢在夕阳的余晖里,捧上一本最爱的书,缅怀又一天的逝去。感谢东坡先生教会我,要一直保持“仰天大笑出门去”的乐观旷达;感谢青莲居士教会我,要在平淡无奇的生活中追寻浪漫;感谢易安居士教会我,要在逆境中学会抗争……还喜欢《简·爱》中女主人公的人格独立,喜欢《红楼梦》中林妹妹的“腹有诗书气自华”,喜欢《追风筝的人》中哈桑的虔诚善良…… 这些感人的书,这些不平凡的人物,伴我走过美好的青葱岁月。感谢,感恩。 会玩,才好。在生活中会玩,在玩中学会生活。在繁忙的生活中学会自我排解,用一颗向上的心去感知生活的美好,才能够活得舒服,活得有意义。那么,玩起来如果能够把疾病也全数消灭,那么这份苦难又将由(比如说)像貌丑陋的人去承担了。就算我们连丑陋,连愚昧和卑鄙和一切我们所不喜欢的事物和行为,也都可以统统消灭掉,所有的人都一样健康,漂亮,聪慧,高尚,结果会怎样呢?怕是人间的剧目就全要收场了,一个失去差别的世界将是一条死水,是一块没有感觉没有肥力的沙漠。 4、浩倡。《九歌·东皇太一》:“陈竽瑟兮浩倡”。“浩倡”又作“浩唱”,和上句“安歌”相对应。取名时可改为“浩昌”。下文《九歌·少司命》中还有“浩歌”。令诸校屯豫章梅领待命。 苏东坡的朋友张先八十多岁的时候纳了十八岁的小妾,春风得意之际,赋诗一首:“我年八十卿十八,卿是红颜我白发。与卿颠倒本同庚,只隔中间一花甲。”苏轼也作诗调侃道:“十八新娘八十郎,苍苍白发对红妆。鸳鸯被里成双夜,一树梨花压海棠。” 一千多年后,“一树梨花压海棠”的故事,演变成了被称作有史以来成就最高的华裔自然科学家杨振宁与年轻的晚辈之间的版本。 而前不久,一份遗产分割的消息被爆出。 据说陪伴杨振宁3年的妻子翁帆,在遗产分配里只得到一套别墅的“生前使用权”,产权还属于清华大学,而杨振宁和已故前妻杜致礼的三个子女将获得现金资产。 事情的真假还不得而知,但网友们的意见大约是这样的。 清晨的阳光倾泻在他胖 如右图,六边形的六个角分别代表六种三角函数,存在如下关系: )对角相乘乘积为,即sinθ·cscθ=;cosθ·scθ=;tanθ·cotθ=。 2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·scθ... 3)阴影部分的三 六个三角函数也可以依据半径为中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0和π/2弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理, 三角函数 单位圆的方程是:对于圆上的任意点(x,y),x2+y2=。 图像中给出了用弧度度量的一些常见的角:逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的x和y坐标分别等于cosθ和sinθ。图像中的三角形确保了这个公式;半径等于斜边且长度为,所以有sinθ=y/和cosθ=x/。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于的一种查看无限个三角形的方式。 对于大于2π或小于等于2π的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为2π的周期函数:对于任何角度θ和任何整数k。 周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是2π弧度或°;正切或余切的基本周期是半圆,也就是π弧度或80°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。 在正切函数的图像中,在角kπ附近变化缓慢,而在接近角(k+/2)π的时候变化迅速。正切函数的图像在θ=(k+/2)π有垂直渐近线。这是因为在θ从左侧接进(k+/2)π的时候函数接近正无穷,而从右侧接近(k+/2)π的时候函数接近负无穷。 三角函数 另一方面,所有基本三角函数都可依据中心为O的单位圆来定义,类似于历史上使用的几何定义。特别是,对于这个圆的弦AB,这里的θ是对向角的一半,sinθ是AC(半弦),这是印度的阿耶波多介入的定义。cosθ是水平距离OC,vrsinθ=-cosθ是CD。tanθ是通过A的切线的线段AE的长度,所以这个函数才叫正切。cotθ是另一个切线段AF。scθ=OE和cscθ=OF是割线(与圆相交于两点)的线段,所以可以看作OA沿着A的切线分别向水平和垂直轴的投影。DE是xscθ=scθ-(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在θ接近π/2的时候发散,而余割和余切在θ接近零的时候发散。 依据单位圆定义,可以做三个有向线段(向量)来表示正弦、余弦、正切的值。如图所示,圆O是一个单位圆,P是α的终边与单位圆上的交点,M点是P在x轴的投影,A(,0)是圆O与x轴正半轴的交点,过A点做过圆O的切线。 那么向量MP对应的就是α的正弦值,向量OM对应的就是余弦值。OP的延长线(或反向延长线)与过A点的切线的交点为T,则向量AT对应的就是正切值。向量的起止点不能颠倒,因为其方向是有意义的。 角形,处于上方两个顶点的平方之和等于下顶点的平方值,如: ; ; 。 变化规律 正弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大); 余弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大); 正切值在 随角度增大(减小)而增大(减小); 余切值在 随角度增大(减小)而减小(增大)。 注:以上其他情况可类推,参考第五项:几何性质。 除了上述六个常见的函数,还有一些不常见的三角函数: 乎乎的小手上,他摇晃着身子,小手在黑白键上随意移动,脚掌在地上一起一落,谁都不知道他在弹些什么。他似乎很陶醉似的紧闭双眼,微抿小嘴,哼唱着一些毫不搭调的曲子,满脸的欢喜。 他是我的表弟,一个对音乐一窍不通的小男孩,每每坐到我的琴前,都会表现出一副音乐家的姿态,在琴键上尽情挥洒他对于音乐的热爱。 曾几何时,我也像他一样,秉承着一份热情,投入一项爱好,无法自拔。我会在一张画纸上,倾泻小小的情绪,尽管画工十分浅薄;我会在动听的乐曲里,不由自主地歌唱,尽管嗓音不那么嘹亮;我会用相机,用心记录下沿途所见的风景,尽管技术并不精湛……我想,人生在世,何必在意那些细枝末节,学会在平淡如水的生活中,用双手扬起朵朵浪花,寻找生活的情趣,抓住逝去的光阴里的每一个小空隙。会玩,才好。喜欢约上三两个好友,登上高高的山顶,在天宇下放声歌唱。在山顶上歌唱,脑袋是空空的,心是明朗的。当自己的歌声从那方的山传回时,心是飘飘的,飘出了躯壳,飘到了天上,与浮云做伴,与天宇相栖。唱到漫天繁星,唱到街灯通明,唱 春暖花正开,我们都是一群开始学会浅忆的孩子,总是喜欢自由的穿梭在季节的半度微凉里,行走着,也不断寻找着,那个温暖季节里不老的青春,那个春天中哭过笑过的日子。 凉凉的风迅速钻进每个刚出教室的人的脖子里,吸走所有温暖之后扬长而去。一个个班级排着不太整齐的队形围着操场跑着,踩着还恋恋不舍离去的风,循环似地跑。在这个沙土满天飞的地方,这个用多少汗水浇灌过依然没有变样的地方,这个满天飞舞着梦想羽毛的地方。我,我们都在进行着一场不允许暂停的旅程。 卸下了厚重的围脖、手套,每个人都显得清爽多了,这也许就是春天对我最大的馈赠吧。迫不及待换上单薄衣服的我也任岁月在我单薄的青春里放肆地游走,这个季节也记载着我们“时光不老,我们不散”的誓言。在初三仅剩的七十多天里,开始享受着汗水浸透衣服的酣畅,开始提笔将一件件往事定格在同学录上,尽管这些精致的纸掩盖不住每个人内心的伤。这些都是这个季节的附带品,我像是个提前拆开了包装的人,没理由拒绝。也许,还不是最感伤的六月,但我已经开始练习释然,预演着一颗不会流泪的心。事实证明是我无能,放不下这珍贵的三年光阴,走不出这个温暖到伤悲的春天。 年的春天,我们说好一起走下去,就当做我三年初中生活的最终结局,就当我们关于这个季节的约定。 阳光将雾气暖开了,化作一滩水花落在地上,无声无息中视界清晰了,空气中充斥着这个季节本来的清新。远山轮廓分明,学校里新栽的玉兰花含苞待放,一切都在盼望着。复习、订正习题成了每天的生活,和每个初三学生一样,习惯性地在练习本上凌乱地写着运算步骤,将算出的答案无比认真的写在试卷上,用醒目红笔圈改着,看着练习册上那从未谋面的题目。偶尔抬头仰望几下我眼中总有云飘过的天空。这个春天,我们一直在成长,仿佛镌刻着生命中一段独一无二的时光。 每天都是打在走廊里的几米阳光,老师们总不时地向我们脑中灌输着“努力学习,再拼上两个月”的信息。在这样的日子里,看个电视剧成为了每个学生最大的奢侈。看书、复习成了我一直坐在书桌前的动力。如果说夏天是每个毕业生都抱成一团哭的季节,那么春天就是每个毕业生拼搏努力的季节。所以,阳光正明媚,路上花正开,我们正行走着。 放任心飞行,原来春天一直都在,不想把季节的更替禁锢在日历上。我想那应该是一种无休止的奔跑。蓝天白云绿草地,任由心情行走在自然的馥郁里,我向往着,这淡然的时光,这偶尔会盼望着的早春时节。我想春天就是这样一种意境吧,像天空中的云一样,自己飘出一个世界,无论生活给予的是悲伤还是快乐,这惬意的春一直都在。繁忙之中,仍有季节陪我走。 到耐不住山风的 三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。 料峭时,我们才舍得离去。 喜欢背上吉他,去到远方的原野,与轻风流水应和。弹自己最爱的曲子,想自己最想念的朋友:她在那边还好吗,她是否过得快乐呢?喜欢周杰伦的《枫》中的“缓缓飘落的枫叶像思念,我点燃烛光温暖岁末的秋天”,然而我的思念就像那绵绵不断的轻风,像那缓缓而过的流水。我多想用自己仅会的几首曲子,来温暖自己心灵的秋天。 喜欢到小城的美食街上,去寻找不一样的风味。油泼辣子淌在软糯白嫩的面条上“滋滋”作响,一清二白三红四绿的拉面也别具风味。当晶莹剔透的凉皮弹入双唇时,酷爽的炎夏又多了一分韵味。尝的是油盐酱醋茶,品的是生活的酸甜苦辣咸。喜欢在夕阳的余晖里,捧上一本最爱的书,缅怀又一天的逝去。感谢东坡先生教会我,要一直保持“仰天大笑出门去”的乐观旷达;感谢青莲居士教会我,要在平淡无奇的生活中追寻浪漫;感谢易安居士教会我,要在逆境中学会抗争……还喜欢《简·爱》中女主人公的人格独立,喜欢《红楼梦》中林妹妹的“腹有诗书气自华”,喜欢《追风筝的人》中哈桑的虔诚善良…… 这些感人的书,这些不平凡的人物,伴我走过美好的青葱岁月。感谢,感恩。 会玩,才好。在生活中会玩,在玩中学会生活。在繁忙的生活中学会自我排解,用一颗向上的心去感知生活的美好,才能够活得舒服,活得有意义。那么,玩起来如果能够把疾病也全数消灭,那么这份苦难又将由(比如说)像貌丑陋的人去承担了。就算我们连丑陋,连愚昧和卑鄙和一切我们所不喜欢的事物和行为,也都可以统统消灭掉,所有的人都一样健康,漂亮,聪慧,高尚,结果会怎样呢?怕是人间的剧目就全要收场了,一个失去差别的世界将是一条死水,是一块没有感觉没有肥力的沙漠。 4、浩倡。《九歌·东皇太一》:“陈竽瑟兮浩倡”。“浩倡”又作“浩唱”,和上句“安歌”相对应。取名时可改为“浩昌”。下文《九歌·少司命》中还有“浩歌”。令诸校屯豫章梅领待命。 总体来说,都是对杨振宁的控诉,替翁帆不值。 我看到这条新闻的反应却是两份心酸。 第一份心酸是:科学家只有在深陷绯闻之时,才会得到普罗大众的 他是我的表弟,一个对音乐一窍不通的小男孩,每每坐到我的琴前,都会表现出一副音乐家的姿态,在琴键上尽情挥洒他对于音乐的热爱。 曾几何时,我也像他一样,秉承着一份热情,投入一项爱好,无法自拔。我会在一张画纸上,倾泻小小的情绪,尽管画工十分浅薄;我会在动听的乐曲里,不由自主地歌唱,尽管嗓音不那么嘹亮;我会用相机,用心记录下沿途所见的风景,尽管技术并不精湛……我想,人生在世,何必在意那些细枝末节,学会在平淡如水的生活中,用双手扬起朵朵浪花,寻找生活的情趣,抓住逝去的光阴里的每一个小空隙。会玩,才好。喜欢约上三两个好友,登上高高的山顶,在天宇下放声歌唱。在山顶上歌唱,脑袋是空空的,心是明朗的。当自己的歌声从那方的山传回时,心是飘飘的,飘出了躯壳,飘到了天上,与浮云做伴,与天宇相栖。唱到漫天繁星,唱到街灯通明,唱 春暖花正开,我们都是一群开始学会浅忆的孩子,总是喜欢自由的穿梭在季节的半度微凉里,行走着,也不断寻找着,那个温暖季节里不老的青春,那个春天中哭过笑过的日子。 凉凉的风迅速钻进每个刚出教室的人的脖子里,吸走所有温暖之后扬长而去。一个个班级排着不太整齐的队形围着操场跑着,踩着还恋恋不舍离去的风,循环似地跑。在这个沙土满天飞的地方,这个用多少汗水浇灌过依然没有变样的地方,这个满天飞舞着梦想羽毛的地方。我,我们都在进行着一场不允许暂停的旅程。 卸下了厚重的围脖、手套,每个人都显得清爽多了,这也许就是春天对我最大的馈赠吧。迫不及待换上单薄衣服的我也任岁月在我单薄的青春里放肆地游走,这个季节也记载着我们“时光不老,我们不散”的誓言。在初三仅剩的七十多天里,开始享受着汗水浸透衣服的酣畅,开始提笔将一件件往事定格在同学录上,尽管这些精致的纸掩盖不住每个人内心的伤。这些都是这个季节的附带品,我像是个提前拆开了包装的人,没理由拒绝。也许,还不是最感伤的六月,但我已经开始练习释然,预演着一颗不会流泪的心。事实证明是我无能,放不下这珍贵的三年光阴,走不出这个温暖到伤悲的春天。 年的春天,我们说好一起走下去,就当做我三年初中生活的最终结局,就当我们关于这个季节的约定。 阳光将雾气暖开了,化作一滩水花落在地上,无声无息中视界清晰了,空气中充斥着这个季节本来的清新。远山轮廓分明,学校里新栽的玉兰花含苞待放,一切都在盼望着。复习、订正习题成了每天的生活,和每个初三学生一样,习惯性地在练习本上凌乱地写着运算步骤,将算出的答案无比认真的写在试卷上,用醒目红笔圈改着,看着练习册上那从未谋面的题目。偶尔抬头仰望几下我眼中总有云飘过的天空。这个春天,我们一直在成长,仿佛镌刻着生命中一段独一无二的时光。 每天都是打在走廊里的几米阳光,老师们总不时地向我们脑中灌输着“努力学习,再拼上两个月”的信息。在这样的日子里,看个电视剧成为了每个学生最大的奢侈。看书、复习成了我一直坐在书桌前的动力。如果说夏天是每个毕业生都抱成一团哭的季节,那么春天就是每个毕业生拼搏努力的季节。所以,阳光正明媚,路上花正开,我们正行走着。 放任心飞行,原来春天一直都在,不想把季节的更替禁锢在日历上。我想那应该是一种无休止的奔跑。蓝天白云绿草地,任由心情行走在自然的馥郁里,我向往着,这淡然的时光,这偶尔会盼望着的早春时节。我想春天就是这样一种意境吧,像天空中的云一样,自己飘出一个世界,无论生活给予的是悲伤还是快乐,这惬意的春一直都在。繁忙之中,仍有季节陪我走。 到耐不住山风的 三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。 料峭时,我们才舍得离去。 喜欢背上吉他,去到远方的原野,与轻风流水应和。弹自己最爱的曲子,想自己最想念的朋友:她在那边还好吗,她是否过得快乐呢?喜欢周杰伦的《枫》中的“缓缓飘落的枫叶像思念,我点燃烛光温暖岁末的秋天”,然而我的思念就像那绵绵不断的轻风,像那缓缓而过的流水。我多想用自己仅会的几首曲子,来温暖自己心灵的秋天。 喜欢到小城的美食街上,去寻找不一样的风味。油泼辣子淌在软糯白嫩的面条上“滋滋”作响,一清二白三红四绿的拉面也别具风味。当晶莹剔透的凉皮弹入双唇时,酷爽的炎夏又多了一分韵味。尝的是油盐酱醋茶,品的是生活的酸甜苦辣咸。喜欢在夕阳的余晖里,捧上一本最爱的书,缅怀又一天的逝去。感谢东坡先生教会我,要一直保持“仰天大笑出门去”的乐观旷达;感谢青莲居士教会我,要在平淡无奇的生活中追寻浪漫;感谢易安居士教会我,要在逆境中学会抗争……还喜欢《简·爱》中女主人公的人格独立,喜欢《红楼梦》中林妹妹的“腹有诗书气自华”,喜欢《追风筝的人》中哈桑的虔诚善良…… 这些感人的书,这些不平凡的人物,伴我走过美好的青葱岁月。感谢,感恩。 会玩,才好。在生活中会玩,在玩中学会生活。在繁忙的生活中学会自我排解,用一颗向上的心去感知生活的美好,才能够活得舒服,活得有意义。那么,玩起来如果能够把疾病也全数消灭,那么这份苦难又将由(比如说)像貌丑陋的人去承担了。就算我们连丑陋,连愚昧和卑鄙和一切我们所不喜欢的事物和行为,也都可以统统消灭掉,所有的人都一样健康,漂亮,聪慧,高尚,结果会怎样呢?怕是人间的剧目就全要收场了,一个失去差别的世界将是一条死水,是一块没有感觉没有肥力的沙漠。 4、浩倡。《九歌·东皇太一》:“陈竽瑟兮浩倡”。“浩倡”又作“浩唱”,和上句“安歌”相对应。取名时可改为“浩昌”。下文《九歌·少司命》中还有“浩歌”。令诸校屯豫章梅领待命。 “那一年,我和杜致礼去汕头大学考察,当时学校派了一个叫翁帆的小女孩来给我们当向导,我和杜致礼都觉得这个小女孩十分可爱。” 杜致礼更是连连夸赞翁帆的聪明伶俐。 后来,三人愉快地拍了一张合影。因为特别投缘,大会结束后,翁帆和杨振宁夫妇还保持着书信往来。 翁帆(左)、杨振宁、杜致礼(右) 年,杜致礼病重,想要落叶归根。夫妻二人便回到了清华,在北京定居。那时的杨振宁一边照顾夫人,一边在清华上课。 奈何生命有自己的时限,任凭如何不舍,终归还是要松开挽留的手。 两年后,杨振宁挥泪送别了陪伴他53年的爱人。 年轻的杨振宁与杜致礼 那段妻子离开的日子里,他时常一个人,踽踽独行在他们曾经散步经过的林荫小道;也会翻开那本厚厚的旧相簿,几十年的如烟往事,都历历涌上心头。 清华大学物理系的教授们回忆起那时的杨振宁:“他总是一个人,一个人上课,一个人吃饭,一个人看书看电视,一个人睡觉……” 清朝著名文学家沈复曾在妻子陈芸离世后写下伤悼之句:“闲时与你立黄昏,灶前笑问粥可温”。 杜致礼去世后,茕茕孑立的杨振宁,“无人与之立黄昏,无人再问粥可温。” 作为诺贝尔物理学奖的获得者,虽然他能登上人类科学的峰顶,但耄耋之年的他却在蚀骨的孤独前败下阵来。 许多年后,我们也许才会明白,岁月埋下的彩蛋,也许是一张泛黄的旧照片,也许是一封压在箱底的信件。 有一天,杨振宁翻看过去的老照片,不经意间浏览到了那张和翁帆的合照。 杜致礼(左)与翁帆对比照 他蓦然发现眼前这个气质素淡的女孩,眉眼间竟与年轻时的杜致礼颇为神似。 仿佛是冥冥之中,有心灵感应一般,不久,他再次收到了翁帆的书信。 不久,他拨通了她的电话,邀请她到中文大学见面。那时的翁帆心里还有些担忧:多年不见,面对如今已经82岁的杨教授,我是否该上前去搀扶他呢? 但当杨振宁神采奕奕地出现在她面前时,她紧张的心情一下子放松了。 他们相谈甚欢,如老友般畅所欲言。 5月,香港的凤凰花开了。杨振宁邀请翁帆到石澳游玩。 当时下着雨,石澳村通向海边有一段陡峭的山路,翁帆穿着高跟鞋,在一段上坡路稍加犹豫时,杨振宁自然地牵起了她的手。 那天细雨中的一幕似乎成了他们未来生活的隐喻,婚后,每次出行时,他们几乎都是十指相扣。 7月,翁帆和好友一起到内蒙古旅行。在广阔苍茫的草原上,翁帆接到杨振宁的再次邀约,他请她去清华大学他的“归根居”做客。 几天后,翁帆来到清华园,杨振宁已经吩咐保姆为翁帆准备好可口的饭菜。 翁帆发现,虽然他常年生活在美国,但依旧喜欢吃家乡菜,喜欢喝红茶。 平易近人的大物理学家,与之谈笑风生,不仅毫无架子,而且风趣幽默,待人更是悉心周到。 她渐渐走进他的生活,也慢慢走进他的心里。 后来,翁帆回到广州,她常常将心里对杨振宁由仰慕化为爱恋的心情写成英文诗,通过邮件发给杨振宁。 年9月日,翁帆在寄给杨振宁的诗里,写下过“无悔我爱,惟余欣喜,有意逃出,心已陷入……触汝额发,气息拂手,无声胜有”的句子。 随后,她收到了杨振宁修改过的诗,她回信给杨,称其“It’syourpom”(那是你的诗)。 其实,那是他们共同完成的作品,以诗为桥,互诉衷肠。 后来,生性浪漫的杨振宁还给翁帆特意写过小诗,欢喜之情跃然纸上: “没有心机而又体贴人意 勇敢好奇而又轻盈灵巧 生气勃勃而又可爱俏皮 是的,永恒的青春。 上帝恩赐的最后礼物, 给我的苍老灵魂, 一个重回青春的欣喜。” 作家歌德曾在他的《浮士德》中赞叹:“永恒的女性引导我们上升。” 对杨振宁而言,翁帆的青春与美好,是更大的魅力与引力。 年国庆黄金周,杨振宁和翁帆约好一起到广西北海旅行。 碧海蓝天下,翁帆穿着休闲装,和杨振宁一起骑双人自行车,心情轻飏,在海边的椰林小道上尽情享受着独属于二人的快乐时光。 这次北海之旅后,杨振宁在北京,通过电话向翁帆求婚。 翁帆撒娇地说:“哪有向人求婚不送玫瑰的?”杨振宁连忙笑着许诺:“下次见面一定补给你。” 至此,两人的关系正式明确下来。只是翁帆考虑到两人年龄的差距,杨振宁要比自己的父母还要大,不知道他们会不会同意。 父亲翁云光始终视女儿为珍宝,对于女儿的选择,他颇为震惊,但最终,还是尊重了女儿的意见,支持她的决定。 翁帆父亲翁云光 获得父母的祝福后,年2月24日上午,杨振宁由弟弟杨振汉夫妇陪同,与翁帆前去领取结婚证。 当两人的婚讯公布后,在社会上引起轩然大波。 半个世纪的差距在杨振宁和翁帆之间只是一个数字,但在一些人眼里则成了一桩交易:“老夫贪恋美色,少妻贪图名利”。 世俗眼中的“般配”,大多需要旗鼓相当,天造地设。显然,杨振宁和翁帆的结合超出了人们能接受的范畴,有些人甚至还指责二人有伤风化。 对于再婚一事,杨振宁曾直言: “在太太去世后,9世纪英国著名数学家哈密顿过了相当漫长的孤独日子,甚至在书页上都有饮食的污渍,我不要过这样的日子。呵呵,我这个人是很老实的。我有自知之明,一个老年人的孤独,我很怕的。所以人家一问我,我就很老实的回答,如果我没遇到翁帆,还是会再婚的。” 翁帆只是适逢其时,成为他愿意梅开二度的人。 年,在一档访谈节目中,杨澜带着好奇问翁帆:是什么时候,将对一位科学家和长辈的尊敬或崇拜变成了爱情? 翁帆从容道:“不知不觉中。当一个女人很崇拜一个男人的时候,假如这个男人又喜欢她或者爱她,那么这个女人是很容易爱上这个男人的。” 翁帆就人们的不解也给出了解释:“我只是选择了一条更人迹稀少的路。” 这条人迹罕至的路,让她享受荣光,也承担骂名。决定一个人选择的,永远是她的价值取向。 杨振宁曾形容,妻子是上天送给他的最后一份礼物,而翁帆则表示自己婚后一直生活在象牙塔里,面对外界的风风雨雨,他们“置身事外”,按照自己的节奏过着波澜不惊,却余味无穷的日子。 蜚短流长的这些年,并没有影响两人正常的生活。 嫁给杨振宁之前,翁帆和所有的年轻人一样,喜欢喝咖啡,也经常熬夜。但婚后,她配合他的习惯,早睡早起,作息规律。 只要不出远门,他们都会在家里共进一日三餐,偏于清淡,但营养丰富。 晚饭后出去散步,杨振宁有时只穿一件单衣就出了门。 翁帆会赶忙拿起外套和围巾,追上去。 一边仔细帮丈夫整理好,一边小声嗔怪: “会冷的。” 他并不相信补品真的会延年益寿,但当翁帆端来为他精心煲好的具有广东风味的汤时,他会一口气喝下去。 杨振宁虽已年迈,但对妻子也是呵护备至。夜里起来看书,为了不吵醒翁帆,他会独自躲到卫生间去阅读。 有时翁帆弹钢琴,杨振宁便做一个静静的聆听者。 5年,杨振宁接受央视《面对面》的专访,谈到妻子喜欢他什么的问题,杨教授表示,应该是他的诚意与真实,这是翁帆欣赏他的地方。 杨振宁在多个场合表示,他百年之后,赞成翁帆再婚。这一点引起了吃瓜群众的反感:你还想把人囚禁起来列贞节牌坊? 实际上,这场对话是这样的。 杨振宁说:赞成你将来再婚,是年纪大的杨振宁讲的;年纪轻的杨振宁,希望你不再结婚。 这是一个正常男人的心态,有占有欲,但也希望翁帆未来幸福。他并没有强迫谁为他守身如玉。 而翁帆却在刚开始生了气,他让我再婚,是不是不爱我? 这场婚姻,在翁帆看来,也许就是一种恩赐,她愿意“牺牲”,愿意付出,也有着毋庸置疑的骄傲。而杨振宁,就是她的引路人,带她看到了这个世界金字塔尖是什么模样。 我一直认为,从利己性来说,有两种婚姻是最好的,一种是门当户对且掌握了关系的上风,有操控婚姻和生活的主动权。另外一种,是对方高高在上,无法把控,但人生会通过姻亲,完成阶层的飞跃。 所以有人说,杨振宁太太,这个称谓,就千金难买。遗产又如何?我想翁帆从一开始,就清醒地复盘过得失,并非功利性,而是一种是否值得的计算。 所以她也许并不在乎遗产的分配,当她把自己放得谦卑,以与巨人朝夕相处过、兴许能载入人类史册的角度看待这段婚姻,又何谓输赢呢? 退一万步说,杨振宁百年之后,别墅收回之时,又会有谁让科学家的遗孀无家可归呢? 我们也不必伸出手来,指责杨振宁是渣男,夫妻一场,你情我愿,各取所需。求爱得爱,求财得财,求名得名。 无论这场婚姻掺杂了多少的复杂情感和初衷,我依然愿意相信,这场婚姻,有我们看不到的美好,这场“闹剧”,有我们看不到的苦衷。 杨振宁戴了20多年的助听器,每次出席活动,如果听不清楚别人的讲话,他就会自然转头看向翁帆,翁帆心领神会,于是耐心地为他重复一遍。结婚十几年,他们的沟通一向默契十足。 因此,翁帆既是他的灵魂伴侣,也是他的“拐杖”和“耳朵”。 这对不被看好的老夫少妻,曾被传过生子的流言,也曾经因遗产分配问题被推到了风口浪尖上。可是这么多年过去了,两人却始终恩爱两不疑。 翁帆说过:“潜移默化中,我觉得是他创造了我,创造了现在的我。可以说他是我生命中的带路人。” 前几年,翁帆考入了清华大学,攻读建筑学院的博士学位,并常常踏着梁思成和林徽因的足迹到各地去考察文物古迹,也经常撰写专业论文。 好的爱情,是让你看到世界的辽阔,这句话在他们的身上得到了充分印证。 同时,于杨振宁而言,正是有了翁帆的细心照顾和相依相伴,才重新焕发出生命的光彩,虽然90多岁了,他还能参加各种学术活动,也很少耽误给学生们上课,有时还会参加娱乐节目。 有人说,每个人心里都有一团火,路过的人只看到烟,但是总有一个人,总有那么一个人能看到这火,然后走过来,陪我一起。 年,杨振宁在香港过九十大寿。 宴会上,放映了两段杨振宁和翁帆在北京清华园和香港石澳海滩上的短片。 清华园桃花灼灼,石澳滩头水光接天。 在片中,翁帆问杨振宁:“Darling,你今天快乐吗?” 杨教授回答:“我很快乐。” 短片末段,杨教授引用了莎士比亚晚年的一段话:“人生就像七幕戏,第七幕就是最后的一幕:没有牙齿、眼睛看不见、味觉消失,一切也都没有了。 我现在也应该是人生的“第七幕”了,但我还有牙齿、眼睛看得见、味觉也还在,而且我还有一切,“所以我觉得,我的人生是很幸运的。” 一个世纪的光阴,战乱、动荡、科研的艰辛、世人的毁谤、死亡的威胁、衰老与孤独,悲伤与绝望,他都曾一一历遍。在人生行至终点时,爱情的再次造访,让他重新被幸福眷顾。 因此,激昂悲怆的“命运交响曲”过后,他的耳畔回荡起了柔情缱绻的“月光奏鸣曲”。 8年,北京三联书店发行了杨振宁的一本新书《曙光集》。 杨振宁在他的《曙光集》的前言中这样写道:“鲁迅、王国维和陈寅恪的时代是中国民族史上的一个长夜,我和联大同学们就成长于此似无止尽的长夜中。幸运地,中华民族终于走完了这个长夜,看见了曙光。我今年85岁,看不到天大亮了,翁帆答应替我看到……” 这让人想起电影《南极之恋》的片尾,濒临绝境的女主人公为恋人读起聂鲁达的那首诗: 当我安息时,我愿你活着,我等着你 愿你的耳朵继续将风儿倾听 闻着我们共同爱过的大海的芬芳 继续踏在我们一起踏过的沙滩上 愿我的所爱继续活着 我曾爱你,曾为你将万物歌唱 因此,你要继续绚烂地如花怒放 0年后,杨振宁与翁帆共同出了一本书——《晨曦集》。 “没想到以后0年间,国内和世界都起了惊人巨变。今天虽然天还没有大亮,但曙光已转为晨曦,所以这本新书取名为《晨曦集》。” 翁帆说:杨先生很喜欢“晨曦集”这个名字,因为它“寄托了先生一生的期望”。 他以为他等不到“天光大亮”,但6年过去了,他仍与她一起,执手共看这潮涨潮落的人世间。 在一切流逝面前,时间给出了最好的答案。 参考资料: 、杨澜访谈录第0606期 2、央视《面对面》第5..26期 3、《曙光集》生活·读书·新知三联书店杨振宁著、翁帆编译 4、《晨曦集》商务印书馆杨振宁、翁帆著 5、新安网 来源简介:本文来源于遇见荠麦青青( |
转载请注明地址:http://www.nanjizeiou.com/njzosh/5004.html
- 上一篇文章: 白天是夫妻,晚上做邻居
- 下一篇文章: 没有了